Смерч причиняет катастрофические разрушения вследствие весьма значительной силы ветрового напора и большой разности давления в нем и в окружающем пространстве.
Обычно смерч опускается из кучево-дождевого облака, называемого материнским облаком, к поверхности суши или моря, втягивая в себя пыль, песок, камни, траву и воду.
С приближением смерча слышен очень сильный шум, создаваемый ветром при столкновении различных предметов, втянутых в разреженную центральную область смерча.
Длительность существования смерча небольшая: от нескольких минут до нескольких часов, длина пути составляет в среднем 5—10 км, иногда более 30 км (в США длина пути торнадо может достигать 100 км и более). Скорость движения смерча различна: от 10—20 до 60—70 км/ч и более, что в основном обусловлено характером распределения ветра в средней тропосфере. На территории СССР смерчи — сравнительно редкое явление. Они наблюдаются в Прибалтике, Белоруссии, на Украине, в Центральных областях, в Поволжье, на Урале и в Сибири. Водяные смерчи бывают у Черноморского побережья Кавказа, у берегов Крыма, над северо-западной частью Черного моря, у побережья Куршского и Рижского заливов.
Образование смерчей в большой степени обусловлено неустойчивостью стратификации атмосферы. Чем больше неустойчивость стратификации атмосферы, тем более они вероятны. Однако образование смерчей даже и при большой неустойчивости атмосферы происходит крайне редко. Это говорит о том, что в атмосфере должны существовать и другие благоприятные для их образования условия, заключающиеся, по-видимому, в мезомасштабных особенностях циркуляции нижних слоев атмосферы.
Данные наблюдений показывают, что смерчи связаны с двумя типами мезомасштабной циркуляции:
1. С облаками, имеющими горизонтальную ось вращения (крутящийся облачный вал), наблюдающимися на линиях неустойчивости (линиях шквалов) перед быстро движущимися холодными фронтами.
2. С облаками, вращающимися вокруг вертикальной оси. Последний тип циркуляции чаще встречается на холодных фронтах, вдоль которых перемещаются мезомасштабные циклонические вихри.
В передней части материнского облака первоначально, до возникновения смерча, существует крутящийся по ходу движения облачный вал. Чаще всего смерчи возникают с правой стороны облака (по направлению его перемещения), представляя собой как бы продолжение правой части крутящегося вала, при этом наблюдается циклоническое вращение ветра. Имеют место случаи, когда в смерче происходит и антициклоническое вращение ветра.
Смерчи связаны с мезомасштабной циклонической циркуляцией в слоях выше смерча, диаметр которой от нескольких километров до 50 км, а по высоте она распространяется до 10—12 км. Такой тип циркуляции называют «циклон-торнадо». На экране радиолокатора циклон-торнадо имеет вид подковообразного образования с просветом в центре.
По современным представлениям структура смерча, достигающего земной поверхности, весьма сложная. В центральной части смерча имеется ядро, диаметром 100—150 м и меньше, в котором наблюдаются нисходящие движения воздуха до 60—80 м/с. Выхоложенный опускающийся воздух при конвергенции у поверхности Земли, увеличивает разрушительную силу смерча и образует его подножье. Вокруг ядра смерча отмечаются восходящие движения воздуха до 70—90 м/с, в результате которых происходит конденсация водяного пара, что придает смерчу белесоватый цвет, видимый издалека. Когда же смерч вбирает в себя пыль и песок, он становится темным.
Смерч — явление локальное, образуется он вследствие макро - и мезомасштабных особенностей циркуляции атмосферы и наблюдается на холодных фронтах с волнами при наличии мезо-масштабной, диаметром 5—50 км, циклонической циркуляции в нижних слоях тропосферы и при значительной неустойчивости стратификации атмосферы, когда высота верхней границы радиоэха более 11 км, температура на высоте верхней границы радиоэха ниже —48 °С и логарифм радиолокационной отражаемости более 4,0.
В силу малой повторяемости и небольших размеров смерчей крайне редки случаи, когда удается с помощью обычных метеорологических наблюдений измерить характеристики смерча. Поэтому каждый случай непосредственных измерений смерча представляет интерес для выяснения физической сущности его образования.
|